A hybrid elastic metamaterial with negative mass density and tunable bending stiffness

نویسندگان

  • Yangyang Chen
  • Gengkai Hu
  • Guoliang Huang
چکیده

Achieving vibration and/or wave attenuation with locally resonant metamaterials has attracted a great deal of attention due to their frequency dependent negative effective mass density. Moreover, adaptive phononic crystals with shunted piezoelectric patches have also demonstrated a tunable wave attenuation mechanism by controlling electric circuits to achieve a negative effective stiffness. In this paper, we propose an adaptive hybrid metamaterial that possesses both a negative mass density as well as an extremely tunable stiffness by properly utilizing both the mechanical and electric elements. A multi-physical analytical model is first developed to investigate and reveal the tunable wave manipulation abilities in terms of both the effective negative mass density and/or bending stiffness of the hybrid metamaterial. The programmed flexural wave manipulations, broadband negative refraction and waveguiding are then illustrated through three-dimensional (3D) multi-physical numerical simulations in hybrid metamaterial plates. Our numerical results demonstrate that the flexural wave propagation can essentially be switched between “ON/OFF” states by connecting different shunting circuits. © 2017 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Band Gap Control in an Active Elastic Metamaterial With Negative Capacitance Piezoelectric Shunting

Elastic metamaterials have been extensively investigated due to their significant effects on controlling propagation of elastic waves. One of the most interesting properties is the generation of band gaps, in which subwavelength elastic waves cannot propagate through. In the study, a new class of active elastic metamaterials with negative capacitance piezoelectric shunting is presented. We firs...

متن کامل

An adaptive metamaterial beam with hybrid shunting circuits for extremely broadband control of flexural waves

A great deal of research has been devoted to controlling the dynamic behaviors of phononic crystals and metamaterials by directly tuning the frequency regions and/or widths of their inherent band gaps. Here, we report a new class of adaptive metamaterial beams with hybrid shunting circuits to realize super broadband Lamb-wave band gaps at an extreme subwavelength scale. The proposed metamateria...

متن کامل

Exact 3-D Solution for Free Bending Vibration of Thick FG Plates and Homogeneous Plate Coated by a Single FG Layer on Elastic Foundations

This paper presents new exact 3-D (three-dimensional) elasticity closed-form solutions for out-of-plane free vibration of thick rectangular single layered FG (functionally graded) plates and thick rectangular homogeneous plate coated by a functionally graded layer with simply supported boundary conditions. It is assumed that the plate is on a Winkler-Pasternak elastic foundation and elasticity ...

متن کامل

Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials

In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of t...

متن کامل

Tunable cylindrical shell as an element in acoustic metamaterial.

Elastic cylindrical shells are fitted with an internal mechanism which is optimized so that, in the quasi-static regime, the combined system exhibits prescribed effective acoustic properties. The mechanism consists of a central mass supported by an axisymmetric distribution of elastic stiffeners. By appropriate selection of the mass and stiffness of the internal mechanism, the shell's effective...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017